STALLA: UM FRAMEWORK PARA ANÁLISE DE FONTES ABERTAS DURANTE A PANDEMIA DO COVID19
Redes Sociais, Redes Neurais Recorrentes (RNN, LSTM, BiLSTM, Supervisão Fraca
A expansão das redes sociais resultou em um aumento na distribuição de campanhas de desinformação, que colocam em risco a estabilidade democrática nacional, tornando-se um elemento desfavorável para a produção do conhecimento de Inteligência. Com o objetivo de mitigar este óbice, foi proposto o framework STALLA para coleta, tratamento, rotulação automatizada e análise de informações, proporcionando maior eficiência na produção do conhecimento. Assim, o estudo tem por escopo a pandemia do Covid-19, a partir de dados coletados de textos curtos (tweets), no idioma português, da rede social Twitter. Considerandose os trabalhos correlatos, as Redes Neurais Recorrentes (RNN) apresentam-se como as mais vocacionadas para análises textuais. A partir dessa premissa, o desempenho do STALLA foi analisado comparando-se as implementações das redes LSTM e BiLSTM, resultando em uma acurácia de aproximadamente 70\%, valor considerado expressivo para a definição da relevância da informação.