Curvature estimates for gradient ricci solitons of dimension 4
Ricci flow, Ricci solitons, curvature estimates, Weyl tensor, four-manifolds
In this work, we provide a study of complete gradient shrinking Ricci solitons of dimension 4. We present in detail the proofs (originally exposed in an article by Huai-Dong Cao, Ernani Ribeiro Jr, and Detang Zhou) of two theorems that guarantee geometrical classifications and controls on the Ricci or Riemannian curvature, provided that pointwise estimates on the self-dual or anti-self-dual parts of the Weyl tensor or a certain control on the scalar curvature in terms of the soliton's potential function are satisfied.