Banca de DEFESA: Ricardo José Sandoval Matos

Uma banca de DEFESA de DOUTORADO foi cadastrada pelo programa.
STUDENT : Ricardo José Sandoval Matos
DATE: 01/09/2023
TIME: 10:00
LOCAL: Departamento de Matemática
TITLE:

Dinâmica e Topologia em Subgrupos Compactos Maximais


KEY WORDS:

Lie groups, Morse decomposition, Normal hyperbolicity, Cellular homology


PAGES: 67
BIG AREA: Ciências Exatas e da Terra
AREA: Matemática
SUMMARY:

In this work we study the dynamics and topology of the maximal subgroup K of a semisimple Lie groups G, first we study hyperbolic actions on K and then general translations. For this we find the minimal Morse components and stable and unstable varieties and prove that the minimal Morse components are normally hyperbolic. The unstable varieties correspond to Bruhat cells whose closure are the Schubert cells. This division on Schubert cells of K creates a cell complex that permit the calculation of the homology groups of K. We focus on the case of split real forms. The boundary operator is found in general and the example SO(3) is calculated geometrically and by the formulas.


COMMITTEE MEMBERS:
Externo à Instituição - LONARDO RABELO - UFJF
Interno - 1702477 - LUCAS CONQUE SECO FERREIRA
Externo à Instituição - LUIZ ANTONIO BARRERA SAN MARTIN - UNICAMP
Presidente - 1548874 - MAURO MORAES ALVES PATRAO
Interno - 3193644 - PEDRO ROITMAN
Notícia cadastrada em: 11/08/2023 11:42
SIGAA | Secretaria de Tecnologia da Informação - STI - (61) 3107-0102 | Copyright © 2006-2024 - UFRN - app22.sigaa22